Bezout-type theorems for differential fields
نویسندگان
چکیده
منابع مشابه
Some Steinhaus type theorems over valued fields
© Annales mathématiques Blaise Pascal, 1996, tous droits réservés. L’accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impres...
متن کاملKamenev Type Theorems for Second Order Matrix Differential Systems
We consider the second order matrix differential systems (1) (P(t)Y1)'+ Q(t)Y = 0 and (2) Y" + Q(t)Y = 0 where Y, P , and Q are n x n real continuous matrix functions with P(t) , Q(t) symmetric and P(t) positive definite for t E [to, cc) (P(t) > 0 , t > to) . We establish sufficient conditions in order that all prepared solutions Y(t) of (1) and (2) are oscillatory. The results obtained can be ...
متن کاملMassera Type Theorems for Abstract Functional Differential Equations
The paper is concerned with conditions for the existence of almost periodic solutions of the following abstract functional differential equation u̇(t) = Au(t)+[Bu](t)+f(t), where A is a closed operator in a Banach space X, B is a general bounded linear operator in the function space of all X-valued bounded and uniformly continuous functions that satisfies a so-called autonomous condition. We dev...
متن کاملExistence Theorems for Nonlinear Functional Differential Equations of Neutral Type
Conditions are found upon satisfaction of which the differential equation x(n)(t)− λx(n)(t− σ) + f(t, x(g(t))) = 0 has solutions which are asymptotically equivalent to the solutions of the equation x(n)(t)− λx(n)(t− σ) = 0. § 0. Introduction We consider the neutral functional differential equation x(n)(t)− λx(n)(t− σ) + f(t, x(g(t))) = 0 (A) under the assumptions that (i) n ≥ 1 is an integer; λ...
متن کاملControl Theorems for Function Fields
Let F be a global function field of characteristic p > 0, let F /F be a Galois extension with Gal(F /F) ≃ Z N p and let E/F be a non-isotrivial elliptic curve. We study the behaviour of Selmer groups Sel E (L) l (l any prime) as L varies through the subextensions of F via an appropriate version of Mazur's Control Theorem. In the case l = p we let F = F d where F d /F is a Z d p-extension. With ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2017
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x17007035